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By observing the methyl proton double-doublet due to la­
beling at Ci and C3 only, and irradiating the carbon 
frequencies in steps from 20 to 2 Hz, we could demonstrate 
that VC3HM a nd 1Jc)C3 have opposite signs, the same result 
as above. More importantly, however, './CiC3 and 2Jc,HM 

were shown to have the same sign by noting that low fre­
quency carbon irradiation enhanced the low frequency pro­
ton peak whereas higher frequency irradiation enhanced the 
high frequency proton peak. Thus the signs are uniquely de­
termined (based on *JCMHM being positive10). 

It should be noted also that placing the 13C irradiating 
frequency to a position 5 ppm more shielded than that car­
bon decoupling frequency needed to reduce the proton dou­
ble-doublet of C1-C3 dilabeled material to a doublet (J = 
7.3 Hz) results in another doublet (J = 2.7 Hz). This 
means the less shielded carbon, C3 (29.02 ppm from 
TMS),2 is coupled to HM with the smaller J while the more 
shielded carbon, Ci (24.02 ppm),2 is coupled to HM by the 
larger J. 

Finally, since little is known about the signs of carbon-
carbon coupling constants13 except that xJcc is posi­
tive514,15 (with the exception of '/ciC3 in bicyclobutane) it 
would be inappropriate to discuss the significance of a nega­
tive 2JC1CM- It should also be noted that as expected,100 the 
signs of ' / C H , 2-A:H, and 37CH alternate. In addition the 
sign of 2 / C H is expected to be negative for a system where 
the H is attached to an sp3 hybridized C which in turn is 
bonded to either an sp2 or sp hybridized C,16 which is the 
case in a l-methylbicyclobutane.3a 

We would also like to point out that all of the signs and 
values for the coupling constants reported agree in sign and 
approximate value with those calculated by Schulman in 1-
methylbicyclobutane using the INDO coupled Hartree-
Fock approxmation.17 
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Lack of Selectivity in the Electrophilic Addition 
of p-Toluenesulfonylnitrene to Tertiary Amines. 
Conformational Equilibrium in JV-Methylpiperidines 

Sir: 

The position of the iV-methyl equilibrium in ./V-methylpi-
peridines (1 =̂* 2) is a problem of considerable current in­
terest.1-3 We report some results obtained by a novel photo­
chemical procedure, the rationale of which has been out­
lined previously.4 

p-Toluenesulfonylnitrene, p-MeC6H4S02N, photochem-
ically generated in situ from the azide, was shown4 in com­
petition experiments not to discriminate between dimethyl 
sulfide and diisopropyl sulfide in the reaction to produce 
iminosulfuranes /?-MeC6H4SC«2N~S+R2, and we have now 
found a similar lack of discrimination between butyl- and 
isobutyldimethylamines in the competitive conversion into 
aminimides /?-MeC6H4S02N~N+Me2R. These quantita­
tive comparisons (rate-constant ratio 1.0:1 in each case5) 
are supported by further examples of lack of selectivity of 
the nitrene probe for competitive additions to nucleophiles 
in systems where precise quantitative assessments are ad­
ventitiously more difficult. There appears to be little if any 
discrimination between dimethyl sulfide and di-/er-butyl 
sulfide despite the ready thermal conversion of the imino-
sulfurane from the latter into the sulfenamide p-MeCf,-
H4S02NHSCMe3 presumably because of internal steric 
compressions. Likewise, the nitrene adds about equally 
readily to each nitrogen atom of 1,2,4-trimethylpiperazine.6 

Our deductions in the sequel are based on the expectation, 
which accords with all our available experimental evidence, 
that /Moluenesulfonylnitrene will be kinetically unselective 
between tertiary piperidine conformers such as 1 and 2 or 5 
and 6 in the reaction to yield diastereoisomeric aminimides. 

From l-methyl-4-te/-f-butylpiperidine (1 ^ 2; R = equa­
torial 4-?-Bu) and the nitrene only one aminimide (formu­
lated as 4; R = equatorial 4-/-Bu) was observed by exami­
nation of the 1H NMR spectrum of the appropriate product 
fractions. We were just able to detect 1% of the diastereo-
isomer 3 in the spectra of calibration mixtures,7 2% being 
very clearly evident. We deduce that the 4-tert-butyl base 
and hence the parent N-methylpiperidine (1 =̂* 2; R = H) 
has no more than about 1% of the conformation 1 with 
axial N-methyl (-AG°30o > 2.7 kcal mol-1 in 
CChFCClF2)8. 1,4-Dimethylpiperidine and the nitrene 
gave mixed diastereoisomeric imides in ratio 22:1, a value 
we interpret in terms of two predominating conformers 2 (R 
= equatorial 4-Me) and 2 (R = axial 4-Me) in the reactant 
base, in ratio controlled by the 4-methyl conformational 
preference, which is presumably similar to that10 of methyl-
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cyclohexane ( - A C 3 0 5 = 1.70 kcal mol - 1 or A: = 17). Tro-
pane" (5 5=* 6) gave mixed aminimides in ratio 4.2:1 
(-AC 3OO = 0.86 kcal mol - 1 in CCl2FCClF2) and, by ap­
plication of the kinetically controlled protonation proce­
dure,3 '13 diastereoisomeric salts in ratio 5.8:1 ( -AG 0

3 u o = 
1.05 kcal mol - 1 in CCl2FCClF2 or cyclohexane near the in­
terface with aqueous sulfuric acid). Agreement between the 
two methods is satisfactory14 in view of the obvious differ­
ence in physical conditions. 

In application of the photochemical method, all bases (or 
mixtures of bases) were converted into aminimides by irra­
diation through Pyrex of solutions in CCl2FCClF2 contain­
ing p-toluenesulfonyl azide and a large excess of base, using 
a 450-W medium-pressure Hanovia lamp and a water-jack­
eted reaction cell with temperature controlled to ± 2 ° . 
Yields of aminimide (based or decomposed azide) were typ­
ically 2-3% (8-9% with tropane); numerous by-products 
were evident, but under the experimental conditions chosen 
the high yields of by-products do not affect the quantitative 
conclusions on conformational equilibria.4,15 Aminimides 
were readily isolated chromatographically and monitored 
by their characteristic ir spectra (strong bands at ca. 1090, 
1130, and 1260 c m - 1 ) . Rigorous checks with calibration 
mixtures (some in high ratios) indicated no tendency 
toward thermal or photochemical equilibration of products, 
and no loss of minor component during isolation proce­
dures. 
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Tunneling Rotation of the Methyl Radical in 
the CH3COONa«3D20 Crystal 

Sir: 

Since Freed1 theoretically predicted the quantum tunnel­
ing effect of the methyl group in radicals, several inter­
esting experimental investigations2 have been reported on 
the effect. However, these ESR studies on the quantum tun­
neling effect have been restricted to the systems for the 
methyl group in free radicals. In this paper, we wish to re­
port the tunneling rotation of the methyl radical about the 
threefold symmetry axis of the molecule in a crystal. 

We have measured temperature dependence of ESR 
spectra of the methyl radical produced by y irradiation of a 
single crystal of CH3COONa-SD2O at temperatures below 
77 K. The crystal was mounted in a quartz tube of high pu­
rity for the 7 irradiation and the ESR measurements. The 
insertion type liquid helium Dewar3 was used for the ESR 
measurements at the temperatures below 77 K. The tem­
perature dependence could be examined for about 4 h until 
the sample temperature reaches 4.2 K, by keeping the crys­
tal inside of the sample tube vacuo so that the thermal con­
duction might take place only through direct contact of the 
crystal with the glass wall. The ESR spectra shown in Fig­
ure lb-e were observed during the first 2 h in the sample 
cooling process, and the spectrum of Figure 1 f was observed 
during the last 2 h. After the sample temperature reached 
equilibrium with the liquid helium temperature, ESR ab­
sorption could not be observed for the sake of the micro­
wave power saturation effect. 

As Figure 1 shows, the y irradiated crystal of 
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